skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Rogowski, Louis William"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This study investigates the motion characteristics of soft alginate microrobots in complex fluidic environments utilizing wireless magnetic fields for actuation. The aim is to explore the diverse motion modes that arise due to shear forces in viscoelastic fluids by employing snowman-shaped microrobots. Polyacrylamide (PAA), a water-soluble polymer, is used to create a dynamic environment with non-Newtonian fluid properties. Microrobots are fabricated via an extrusion-based microcentrifugal droplet method, successfully demonstrating the feasibility of both wiggling and tumbling motions. Specifically, the wiggling motion primarily results from the interplay between the viscoelastic fluid environment and the microrobots’ non-uniform magnetization. Furthermore, it is discovered that the viscoelasticity properties of the fluid influence the motion behavior of the microrobots, leading to non-uniform behavior in complex environments for microrobot swarms. Through velocity analysis, valuable insights into the relationship between applied magnetic fields and motion characteristics are obtained, facilitating a more realistic understanding of surface locomotion for targeted drug delivery purposes while accounting for swarm dynamics and non-uniform behavior. 
    more » « less
  2. Abstract Chemically coated micro/nanoparticles are often used in medicine to enhance drug delivery and increase drug up-take into specific areas of the body. Using a recently discovered spontaneous symmetry breaking propulsion mechanism, we demonstrate that chemically coated microparticles can swim through mucus solution under precise navigation and that certain functionalizations can dynamically change propulsion behavior. For this investigation biotin, Bitotin-PEG3-amine, and biotin chitosan were chemically functionalized onto the surfaces of magnetic microparticles using an avidin–biotin complex. These chemicals were chosen because they are used prolifically in drug delivery applications, with PEG and chitosan having well known mucoadhesive effects. Coated microparticles were then suspended in mucus synthesized from porcine stomach mucins and propelled using rotating magnetic fields. The relationship between different chemical coatings, microparticle velocity, and controllability were thoroughly explored and discussed. Results indicate that the biotinylated surface coatings altered the propulsion behavior of microparticles, with performance differences interlinked to both magnetic field properties and localized mucus properties. Precisely controlled drug carrying microparticles are envisioned to help supplant traditional drug delivery methods and enhance existing medical techniques utilizing micro/nanoparticles. 
    more » « less
  3. This paper demonstrates a manipulation of snowman-shaped soft microrobots under a uniform rotating magnetic field. Each microsnowman robot consists of two biocompatible alginate microspheres with embedded magnetic nanoparticles. The soft microsnowmen were fabricated using a microfluidic device by following a centrifuge-based microfluidic droplet method. Under a uniform rotating magnetic field, the microsnowmen were rolled on the substrate surface, and the velocity response for increasing magnetic field frequencies was analyzed. Then, a microsnowman was rolled to follow different paths, which demonstrated directional controllability of the microrobot. Moreover, swarms of microsnowmen and single alginate microrobots were manipulated under the rotating magnetic field, and their velocity responses were analyzed for comparison. 
    more » « less
  4. null (Ed.)
    Abstract Microscale propulsion impacts a diverse array of fields ranging from biology and ecology to health applications, such as infection, fertility, drug delivery, and microsurgery. However, propulsion in such viscous drag-dominated fluid environments is highly constrained, with time-reversal and geometric symmetries ruling out entire classes of propulsion. Here, we report the spontaneous symmetry-breaking propulsion of rotating spherical microparticles within non-Newtonian fluids. While symmetry analysis suggests that propulsion is not possible along the fore-aft directions, we demonstrate the existence of two equal and opposite propulsion states along the sphere’s rotation axis. We propose and experimentally corroborate a propulsion mechanism for these spherical microparticles, the simplest microswimmers to date, arising from nonlinear viscoelastic effects in rotating flows similar to the rod-climbing effect. Similar possibilities of spontaneous symmetry-breaking could be used to circumvent other restrictions on propulsion, revising notions of microrobotic design and control, drug delivery, microscale pumping, and locomotion of microorganisms. 
    more » « less
  5. null (Ed.)
  6. null (Ed.)
    The modular assembly and actuation of 3D prin- ted milliscale cuboid robots using a globally applied magnetic field is presented. Cuboids are composed of a rectangular resin shell embedded with two spherical permanent magnets that can independently align with any applied magnetic field. Placing cuboids within short distances of each other allows for modular assembly and disassembly by changing magnetic field direction. Assembled cuboids are demonstrated to stably self-propel under sequential field inputs allowing for both rolling and pivot walking motion modes. Swarms of cuboids could be actuated within the working space and exhibit near identical behavior. Specialized ‘trap robots’ were developed to capture objects, transport them within the working space, and subsequently release the payload in a new location. Cuboids with male and female connectors were developed to exhibit the selective mating between cuboids. The results show that cuboids are a diverse and adaptable platform that has the potential to be scaled down to the sub-millimeter regime for use in medical or small-scale assembly applications. 
    more » « less
  7. This paper presents 2D feedback control and open loop 3D trajectories of heterogeneous chemically catalyzing Janus particles. Self-actuated particles have enormous implications for both in vivo and in vitro environments, which make them a diverse resource for a variety of medical and assembly applications. Janus particles, consisting of cobalt and platinum hemispheres, can self-propel in hydrogen peroxide solutions due to platinum’s catalyzation properties. These particles are directionally controlled using static magnetic fields produced from a triaxial approximate Helmholtz coil system. Since the magnetization direction of Janus particles is often heterogeneous, and thereby not consistent with the propulsion direction, this creates a unique opportunity to explore the motion effects of these particles under 2D feedback control and open loop 3D control. Using a modified closed loop controller, Janus particles with magnetization both closely aligned and greatly misaligned to the propulsion vectors, were instructed to perform complex trajectories. These trajectories were then compared between trials to measure both consistency and accuracy. The effects of increasing offset between the magnetization and propulsion vectors were also analyzed. The effects this heterogeneity had on 3D motion is also briefly discussed. It is our hope going forward to develop a 3D closed loop control system that can retroactively account for variations in the magnetization vector. 
    more » « less